
 

 
 

Trusting Artificial Intelligence (AI) for Healthcare 
 

Synopsis 

According to Health IT Analytics, “As demand for applications for AI in healthcare grows 
steadily as the technology rapidly advances, the potential for AI to enhance clinical decision 
support, chronic disease management and population health efforts has been checked by 
concerns over model bias and fairness” 0F

i.  
 
This paper addresses the application of causality 1F

ii and the use of causal AI in the modelling 
of healthcare applications, and how this branch of AI addresses the concerns of AI 
trustworthiness in the sector. A recent case study on using causal AI for healthcare claims 
leakage and fraud detection is included in the paper.  
 
Causal AI is the only way to understand and successfully intervene in the world of cause and 
effect 2F

iii. There is a bias tendency to overestimate the strength and importance of the causal 
object and underestimate that of the effect object in bringing about the outcome 3F

iv. Causality 
fosters attribution, allowing us to attribute responsibility, credit, or liability.  

Glossary 

• Attribution—assigning responsibility, credit, or liability based on an event  
• Causal AI—an AI model based on causality and not correlation, akin to human thought 
• Causality—the relationship and reasoning between cause and effect  
• Causality inference (CI)—the process of identifying and understanding causal 

relationships between variables or events resulting from altering a causal model  



• Causal discovery (CD)—the analysis and construction of models that depict the 
inherent cause and effect relationships within the data  

• Causal fairness—the lack of bias in the resulting decision making from an outcome  
• Causal force—cumulative directional effect of factors that affect time series trends 
• Causal graphs—visualizes causal relationships between variables or events 
• Causal ML—combination or endowment of causality with machine learning   
• Causal RL—combination or endowment of causality with reinforcement learning   
• Computational linguistics—training machines to understand questions and 

language 
• Confounder—an influencing variable in causality that causes spurious correlations 
• Counterfactual Analysis—an intervention to a causal model as to “what if” scenarios 
• Correlation—dependence on a statistical relationship, whether causal or not  
• Deep learning (DL)— subset of AI and machine learning for complex decision making  
• Ensemble modelling—combining results of several analytical models into one spread 
• Experimental data—the ability to control or intervene with variables in a model as an 

experiment to see if any causality is involved in the outcomes produced  
• Explainable AI (XAI)— a process to allow humans to understand the results from AI  
• Feature Sets—knowledge datasets produced by subject matter experts for causal AI 

use  
• Generative AI (GAI)— AI capable of generating text, images, and videos from prompts 
• Graph knowledge databases—a graphical representation of relationships of 

variables 
• Knowledge value chain—process of capturing, storing, and reusing knowledge 
• Machine learning  (ML)— using data and algorithms to make machines learn like 

humans 
• Observational data—the ability to observe certain variables to determine correlation  
• Reinforcement learning—AI that trains automated agents to make real-time 

decisions  
• Variables—an object, event. time series, or data item being measured by causal AI 

Overview: Keeping the Human in the Loop 

Healthcare and insurance are real-world applications that benefit from causality, where 
knowledge can be captured, stored, and reused by domain experts across healthcare 
ecosystems. Causality allows understanding of root causes of events, improving business 
decision making. By using human reasoning within machine learning, it explains event 
phenomena, identifying relationships between cause and effect and what influences the 
outcome.  

Used by philosophers throughout the ages, the causality concept has now melded with the AI 
world and can be endowed to all branches of AI, generating all possible outcomes to mitigate 
and solve real-world issues.  

By understanding causes, healthcare professionals learn from past experiences to avoid 
negative consequences and shape positive outcomes. Scientists systematically create, test, 
and challenge hypotheses to advance innovative frameworks, making causality integral to 
machine learning and statistics. This invokes probability theory,  graphical models, and 
sensitivity analysis to assess the robustness of causal inferences to different assumptions 
affecting the causal relationship.   

The downside of AI, such as trustworthiness, data quality, discrimination, bias, and 
hallucination (inaccurate results) are resolved by an intuitive discipline called causal fairness. 



This enables causality to support decision makers beyond black box AI models and integrate 
more smoothly into organizations.  

There is a distinction between causal inference and causality (Pearl) 4F

v . Causality is a 
philosophical concept of an event (the cause) being attributed for producing another event 
(the effect). Causal inference uses experimental and/or observational data and logical 
reasoning via computational analysis to quantify the strength of causal effects. It aims to 
determine causal relationships and effects between variables (events).   

Healthcare Sector Overview  

 
Source: Eumonics 5F
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The healthcare sector has much to gain from exponential technology and a confluence of AI 
and blockchain technology. Challenges exist in fraud and according to the International 
Organization for Medicare Anti-Fraud, health insurance fraud leads to a global annual loss of 
$260 billion, equivalent to 6 percent of total global health expenditure.6F

vii  

The global healthcare cyber security market size is expected to reach $56.3 billion by 2030 
and expand at a CAGR of 18.5 percent over the forecast period 7F

viii due to increased cyber 
threats and data breaches caused by lack of data integrity. For the insurance industry, claim 
settlement and reconciliation times increase in line with fraud, and lack of medical data 
portability restricts both patient and insurer choices.  

The following chart from RGA shows the magnitude of healthcare in insurance fraud8F

ix.  

Source: RGA  

In general, the stakeholders of the healthcare sector have existed in silos, making it difficult to 
address challenges. There is a necessity to move to an ecosystem approach as shown on the 
right-hand side of the diagram (courtesy of Guardtime Health).9F
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Insurers can expand provider networks to a free-market economy, so hospitals compete on 
price, and there needs to be immutability of electronic healthcare records (EHR) to create trust 
in the network, reducing fraud.  

This means transformation of healthcare systems using data analytics and smart devices 
based on improved patient outcomes, integrating multiple care providers across a broader 
healthcare ecosystem. This will centre around patient consent and control of personal health 
data using causal ML for large-scale medical data analysis.  

The blockchain approach will electronically share prescriptions with pharmacies to mitigate 
against duplication or collusion between patient and doctor and encouraging outcome-based 
contracting/pricing. The pharma supply chain is then managed by accountability and visibility 
for improved clinical trials.  

Meeting the challenge of population health and disease interception requires access to large 
volumes of data such as real-world data and evidence. This engages the patients beyond 
clinical trial completion where regulators require explanation of risk management and insurers’ 
evidence of effectiveness and preserving privacy.  

Patients and insurers expect a high quality of care from healthcare providers, leading to 
personal treatment plans. Following COVID-19, new products emerged, such as healthcare 
securitisation of pandemic risks (bonds) with granular real-time parametric data and surgery 
outcome insurance. Multi-disciplined datasets need to be added to the models such as air 
quality, as adding these variables can make the causal predictions more accurate.  

 

Source: AbsolutcClimo 10F
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Causality is crucial to healthcare, understanding disease cause, treatment effectiveness, 
clinical decision support, and precision medicine. Causal models can generalize across 
different populations so diverse groups receive tailored treatments. Precision medicine uses 
causal analysis to determine personalized healthcare approaches. Experimentation using 
causal models enables outcomes, allowing engineered solutions to be evaluated before 



implementation when fully randomized experiments are impractical to conduct. In fraud 
detection, causality isolates causal factors for abnormalities rather than relying on correlations.  

Moving From Correlation to Causality   

Correlation tests for a relationship between two variables; but two variables moving together 
do not identify whether one variable causes the other to occur, hence the phrase “correlation 
does not imply causation” 11F

xii.  It is important to understand the dynamic shift here as correlation 
is a statistical association that measures increasing or decreasing trends between two 
variables (events).  

Causality is an empirical relation between two variables where a change in one (the cause) 
brings about a change in the other (the effect). Causation in AI is preferred to correlation as it 
explains why variables interact in a predictable and rational manner. Correlation analysis is 
statistical, being managed through high-performance computing power. Causal analysis adds 
rational explanation connecting the variables to real-world scenarios that define the risk. 

Stochastic and actuarial modelling in the past has used copulas 12F

xiii , not causality, to determine 
correlation in random variables, such as correlating an earthquake risk with a stock market 
downturn. Similarly, AI/ML rely on statistical correlations to infer causation.  

Humans understand causation through dynamic intuition on how the world works and the 
ability to explain it. This identifies the root cause of an event by understanding the effects of 
any variables that triggered it, providing a deeper explanation of their true relationship.  

Causal inference determines both the independent effect of an event and draws causal 
conclusions from data, such as A happened before B, B did not happen, C, D, E…Z and any 
other variable could not have caused B, providing a more human-like analysis. Causal 
relationships are directional as the cause precedes the effect but correlations can go either 
way and can exist without a cause-effect relationship. 

Causal AI Methodology  

Organizations that do not capture knowledge have loss of capitalized value. Causal AI is 
based on computational linguistics which is the computer modelling of natural languages 
whether written, verbal or visual. This is not translating languages, but capturing formal 
structures and rules to acquire the reasoning to train, interpret, understand and ask human 
questions. Computational linguistics capture, store, and reuse knowledge (intellectual capital), 
especially causal knowledge which understands the relationship between cause and effect 
and is developed with hypothesis-testing methodologies which are aligned with scientific 
methods.  

This then formulates a hypothesis based on direction and magnitude vectors such as, “When 
Magnitude Vector > X, the price is likely to decline”, or “When Magnitude Vector < X, the price 
is likely to increase”. Computational linguistics are more compelling than methods based on 
statistical methods (linear regression), which includes large language models and deep 
learning/neural nets.  



 

Source:VulcainAI 

A hypothesis test explains a causal relationship based on data samples and determines if the 
hypothesis explains historical observations or predicts experimental outcome. If it does neither, 
the hypothesis is rejected.  

Domain expertise can create knowledge data samples, known as feature sets. Human 
augmentation selects the best outcomes to improve the forecasting and integrated business 
planning by informing users how the decision by the model can be altered through minimal 
changes to the input features. This defines new content of causal factors such as indexes, 
baseline forces, benchmarks, and visualizations, all of which can be used in enterprise 
solutions.  

Knowledge that has been captured for the domain is associated with the actual real-world 
behaviour being modelled and then users can continuously refine and improve the knowledge 
to make it as close to the real world as possible. This can then be used to explain what has 
(is) happening, predict what will happen next based on domain intent, and optimize responses 
to undesirable predictions and shape future outcomes.  

For the healthcare case study,  an index was created for each of the causal risk factors 
identified to use as a measure. Once created, a baseline index represents the mean in the 
absence of causal forces. The sequence is shown below, courtesy of Eumonics.    

 

Source: Eumonics 



Baseline forces are important as they are the digital assets that become the enterprise 
intangible assets based on knowledge and can be used in parametric insurance.  

 

Source: Eumonics 

 

The variations from the norm are then identified and known as operational forces. These can 
be upward or downward forces reflecting events; inflation, for example, would be a downward 
force, but interest rate drops an upward force, based on observational data. Like the forces 
on an aeroplane, if you quantify all the forces, you can then predict the position of the plane 
at any point of time.  

 

Source: Wikipedia 

 

Source: Eumonics 

 



Predictions are then created by extending the baselines into the future, as seen by the 
pandemic example.  

 

Source: Eumonics 

 

 

Source: Eumonics 

 

The causality approach is unique and differs from other kinds of AI. Statistical correlation is 
not the way humans think, but that is how AI has looked at solving problems with no 
explanation. Life is a multiple of variables and causality uses human reasoning. Statistics were 
used in the past as there was no causal technology mature enough, so identifying two 
variables together and linking them with statistical algorithms to interpret up and down forces 
was accepted, even though causality itself has been practiced since Plato 13F

xiv. 

Causal AI has been around since the 1950’s and emerged from space research14F

xv and was 
used in moon landings. Statistical analysis and experimentation could not be done so 
outcomes had to be generated from domain experts and then the best outcomes selected and 
then shaped to fit he mission before implementation. Criteria and evaluation metrics (risk 
scores) are related to the extracted results.  If statistical methods put a spacecraft into orbit, 
thousands of  experiments would be required in transporting, landing the spacecraft , departing,  
transporting  back to earth, and tens of thousands of experiments to land the spacecraft safely 
on earth.  



Multiple metrics in a holistic approach are needed to quantify causal understanding. Input 
datasets should include observational and interventional/experimental data and causality 
evaluation has to be based on multiple relevant datasets to test generalization. Benchmarking 
the transportability of causal conclusions to new domains and populations is crucial to 
understand their applicability beyond the training data. 

Healthcare Causal Case Study  

The following case study was presented to the Society of Actuaries in Asia in May 202415F

xvi 
(courtesy of Vulcain.AI 16F

xvii.) 

It deals with experimental proof of concept related to uncovering leakage, or fraud, within a 
historical claims database using a causal AI platform, allowing rapid and accurate data 
harmonization, modeling, and hypothesis testing. Back testing was done to validate the model 
to the relevant predictive accuracy.  

During assessment of the claims data, baseline values were established for each medical 
diagnostic code, connecting agents, hospitals, and doctors in one dataset as a claims path 
which, when analyzed, finds anomalies not detected with simple claim analyses. These 
anomalies are then represented as risk scores.  

As more subject matter experts and data are added, additional possible magnitude of fraud 
vectors can be discovered by understanding the role that hospitals, agents, and doctors play 
in the leakage process. Claims data was harmonized, ingested, and analysed over several 
iterations. Explanations for anomalies were around characteristics for patients (age, gender, 
demographics), doctors, hospitals, treatment protocols, and exogeneous factors around 
climate, air quality, and environmental toxicity.  

Using causal AI, three directional indexes were created for use in downstream models 
accessible through a dashboard, plus observations about potential patient treatment plans 
and pharmaceutical effectiveness.  

The following indexes were created: 

• Claims suspicious index, which risk scores the legitimacy of a claim 
• Agent suspicious index, which assesses agent activity  
• Ancillary cost index, providing insights on overall healthcare costs  

Claims Suspicious Index  

This will make claims teams more focussed on suspicious claims as claim patterns are being 
monitored in real time, applying predictive models to near- and long-term claims fraud. 



 
Source: Vulcain.AI 

The red section shows the true leakage provided in the data or missed true fraud claims. The 
index was deliberately kept broad initially to capture as much suspiciousness as possible.  The 
objective is to identify as many of the suspicious claims as valid. It is necessary to shows how 
an individual claim compares to others with the same diagnostic code.  

The metric value of the claim here is recorded to the right as the blue line. The baseline for 
this measure is the black line, showing the mean, and each of the blue dots represent other 
claims with that diagnostic code.  

This claim is a statistical outlier compared to the mean, giving a high suspiciousness index. 
Using this data in conjunction with hospital/doctor data, risk scores can be developed. 

 
Source: Vulcain.AI 

 

Agent Suspicious Index 

This identifies the agents that cause the most leakage by monitoring agent patterns and 
behaviours in real time, applying predictive models to near- and long-term claims fraud.   

 

 

 

 

 



Ancillary Cost Index  

  

Source: Vulcain.AI 

This demonstrates how average ancillary costs could fluctuate over time using time series 
causal analysis. Ancillary services support patient primary medical services, including 
diagnostic testing, laboratory services, imaging studies, rehabilitation therapy, medical 
equipment, and supplies.  

This index provides insights into the financial impact of ancillary services on overall healthcare 
costs, identifies trends in ancillary service utilization and spending, and informs strategies for 
cost containment and optimization of healthcare resources.  

As can be seen, it identifies that once the client’s co-pay is reached, you get an increase in 
cost. This leads to a potential decision that could spread the co-pay throughout the year, 
providing a benchmark of overall expense costs assisting in the pricing mechanism for 
insurance products.  

Conclusions From the Case Study  

This leakage and fraud detection project should be expanded to include a larger dataset of 
claims to increase accuracy and further validate the index and associated causal models. 
Dedicated subject matter leaders, including the actuarial data science team, will help to clarify 
project goals, priorities, future dashboard implementation, insights, recommendations, 
process optimizations, and change management. Additional indexes should be hypothesized 
and tested for the use cases on patient and doctor effectiveness, hospital cost anomalies, and 
duplicate submissions and payments.  

A patient treatment plan effectiveness strategy can be used to assess the success and 
efficiency of treatment plans implemented by healthcare providers for individual patients. This 
provides insights into the efficacy of treatment interventions, patient outcomes, adherence to 
clinical guidelines, and overall quality of care delivered. Treatment plan evaluations require 
large and diverse patient population datasets to predict accuracy, outcomes, and relevance.  

A pharmaceutical effectiveness strategy can be used to assess the efficacy and safety of 
pharmaceutical drugs. The comprehensive metric factors in various factors, including the 
drug's therapeutic benefits, side effects, dosage regimen, patient compliance, and overall 
impact on health outcomes and clinical trials.  



Better decisions can be made on identifying cost savings, eligibility of physicians and hospitals, 
capping claims, optimizing treatment efficiency, and forecasting future trends around 
procedures, costs, and outcomes. The next step would be to integrate the causal process with 
the underwriting for real time pricing.  

Why Causal AI in the Healthcare Study? 

The choice at this stage of AI development was obvious and shown in the chart created by 
the author. Over time, as causality is endowed on generative AI, the two disciplines will grow 
closer together; but at the time of this paper, generative AI (GAI) could not do this case study.  

Causal AI  Generative AI 
Assumptions explicit in causal models Assumptions implicit in algorithms/data 
Effects generalize beyond training data Relies on identically distributed test data 
Causal graphs encapsulate invariance  ML predictions can change unpredictably  
Methods quantify and mitigate unfair bias Can amplify bias in the training data 
Estimates remain valid with interventions Difficult to transport beyond training  
Data-driven learning with human logic Learn and generate data without causality 
Infer causality through experimentation  Relies on statistics and correlations  
Counterfactual analysis and “what if” No counterfactual capability  
Real-world understanding  No real-world understanding  
Ability to apply attribution  Operates solely on correlations  
Human hints limit the search Complex search optimising no causality 
Verticalized and subjective  Neither verticalized nor subjective 
Based on computational analysis Based on large language modelling  

 

Importance of Determining Causality in Time Series 

Time series analysis benefits from causal models for the examination of dynamic processes 
unfolding over time and tests the models’ ability to discern short-term versus long-term effects.  

Data in the time series are temporally related and when statistical analyses are performed on 
tabular data, it is assumed that the observations are independent, and expectation of future 
events does not depend on past ones 17F

xviii. However, analysing on the raw data measurements 
of a time series can lead to wrong conclusions 18F

xix.  

Take the following commonly used example in the causal graph below. Air pollution can 
increase in the summer and respiratory deaths increase in winter, so is time of year the root 
cause of air pollution and mortality? 



 

Source: Compiled by Author  

Looking at the problem on a time series year by year and aggregating mortality and pollution 
across different populations shows higher pollution causes higher mortality, exposing that 
the time of year has confounded the correlation.  
 
In causal inference, a confounder is a variable that can negatively influence the model and 
cause spurious associations as a confounding variable C is causally associated with both 
the exposure (X) and outcome (Y) but C is not on the causal pathway of X and Y.   
 
ML often makes an inconsistent decision as it cannot tell a spurious correlation from a true 
causal effect. Looking at this example, it can infer that a rise in temperature correlates with 
sunburn and ice cream sales, but ML can give a spurious correlation between ice cream and 
sunburn. When scaling to the size of the internet, the volume of these spurious correlations 
is problematic and a human hint is needed to limit the search to avoid exabytes of false data.  
 
To accurately predict the root cause of pollution on mortality, causal inference and discovery 
are required to derive the answer to manage time of year confounding variable and 
misleading correlations plus adding richer datasets. Having managed the confounders, a 
model now exists that accurately looks at pollution and deaths along a time series, and the 
model becomes a sandbox to freely ask questions not possible with statistical correlation.   
 
Causal graphs capture interactions and relationships between variables and map causal 
pathways to outcomes of interest. A causal graph can show that some mortality is caused 
directly by air pollution and others by extreme temperatures and can be constructed by 
domain experts using observational data, or by a combination of human knowledge and ML 
algorithms.  
 
Intervention gives the ability to make counterfactual predictions about what would happen if 
certain variables were changed to alter the causes of a particular outcome but holding fixed 
other relevant variables or confounders. They can be applied to both observational and 



experimental data and are a tool to understand cause-and-effect relationships in complex 
systems under controlled conditions.  
 
Counterfactual questions, such as what will happen if air pollution levels rise or drop by 
certain percentages, will aid better business decisions in the climate change arena to reduce 
mortality. In the case study, the ancillary index was created using the time series causal 
analysis. 
 
Counterfactual Analysis: Challenging the Causal Model  

Counterfactual questions are the basis of philosophy challenging a hypothesis such as “what 
would the world look like if the INTERNET had not been invented”. This is the integration of 
empirical observation and experience (knowledge) laid down by philosophers down the ages, 
giving rise to explicit and not implicit predictions. Philosophy links causation to explanation. 
There is a need to have more overlap between philosophy and computer (and data) science. 

A counterfactual explanation describes the smallest change in a prediction that alters that 
prediction to a predefined output, thus shaping the event. Causal AI evaluates these 
explanations and shows how and why the best ones were selected so regulators get access 
to the different outcomes to show fairness and an unbiased approach—for example, to 
pricing.  
 
Counterfactual theories of causation can be explained in terms of, “If A had not 
occurred, C would not have occurred”. Every business sector benefits from a better 
understanding of risk; and when a significant event occurs (“black swan”), questions are 
asked about how the loss might have been averted or mitigated.  
 
One question that should be asked is how the loss might have been worse. This can be 
applied to a cyber-attack on a healthcare facility and may shape mitigation of a future, more 
serious attack, as the bad actors will be thinking how to make it worse. This is known as a 
downward counterfactual.  
 
This is described very well in Lloyds of London/RMS Reimaging History report 19F

xx, which 
specifically applies downward counterfactuals to catastrophes. This 2017 report actually 
argues the case for causality in the insurance sector but preceded causal AI developments. 
The report highlights that in statistical analysis, historical data is fixed rather than one 
possible version of many that could have occurred if various influencing factors had been 
different.  
 
Causality also mitigates inbuilt bias inherent in risk models that are based on a single 
standard dataset used by all modellers when exploring long tail risks by facilitating complex 
explanations and deeper understanding of future risks.  
 
Risk analysis is an observational experience, but laboratory experiments in the past have 
only been possible on a small scale. This changes with causal AI where the maximum 
knowledge can be gained from historical experience and domain experts. As the report 
states, “This includes not just what happened, but what almost happened and what might 
have happened”. Downward counterfactual risk analysis provides a useful tool for regulators 
to stress-test, check, and back-test risk models. Statistical correlations do not support 
counterfactual reasoning. 
 
 



Causality Trustworthiness 

Causal models must be trusted for responsible deployment and continued reliance on the 
model. This addresses legal, ethical, and practical concerns regarding AI safety and 
transparency and trust intensifies when models are extracted without human intervention.  

Causality models by definition hold trustworthiness characteristics that can be affirmed by 
human reasoning. Data quality plays a critical role, as potential biases and errors/omissions 
in observational data can undermine the accuracy of causal inferences.  

Identifying the causal structure and assumptions from the given data is crucial as this can 
impact the validity of the conclusions. Confounding must also be addressed to ensure the 
outcome variables are properly measured and accounted for to avoid biased estimates.  

Digitization has enabled efficient handling of data by powerful processors, combined with the 
use of advanced query languages and ML models. Causal inference must operate on a large 
volume of data that is beyond human processing capabilities and needs to accommodate 
velocity, volume, value, variety, and veracity to conduct large-scale experiments and uncover 
cause-effect relationships within real-world scenarios.   

Large observational datasets have facilitated exploration of complex causal structures, with 
thousands of variables, previously too costly to analyse. Passive observational studies 
utilizing extensive patient datasets have emerged as viable alternatives to randomized 
experiments when identifying treatment effects, thanks to the availability of adequate sample 
sizes.  
 
The combination of multiple datasets, encompassing diverse sources like electronic health 
records, social media, and mobile data, can provide complementary insights; but this 
increased capability raises privacy risks. Applying data integrity while preserving privacy not 
only mitigates against cyber-attacks but also allows provenance, non-repudiation, attribution, 
and immutability to the underlying data in the causal models.  
 
The following diagram shows how a holistic data integrity program can be initiated using 
blockchain hashkey cryptography.  
 

 

Source: Guardtime 20F
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Healthcare data must overcome lack of interoperability and, to achieve trust, having a single 
version of the truth with undisputed provenance and veracity. Healthcare data can be 
analysed with permission without physically sharing the data which, if needed, can also be 
transferred without compromise in the case of payments and billing.  

Causality and Explainable AI (XAI) 

XAI provides transparency and understandability to the decision-making process of complex 
AI systems, often perceived as black boxes. By combining causality and XAI, a comprehensive 
causal visual explanation of AI decision-making is achieved by identifying the causal 
relationships between variables that lead to these decisions.  The XAI approach unlocks the 
black box mysteries of AI and allows for algorithmic explanation for regulatory use.  

XAI can generate counterfactual explanations. Models embedding causality identify critical 
information in datasets, discarding irrelevant or outlier correlations and improving predictions 
leading to trustworthy AI solutions. Causality explanation characteristics increase the 
trustworthiness and good for decision making and allows for transportability of knowledge.   

Implementing Causality on Graph Databases 

Graph databases show relationships between models and provide a solid platform for causal 
analysis by tracing causal pathways and connectivity. By identifying interconnected causal 
networks, it becomes possible to determine all entities indirectly impacted by a specific event 
or condition.  

Graph databases also enable the simulation of what-if scenarios, as they allow for the 
modification of causal link attributes. This facilitates the exploration of how a causal network 
may behave under varying conditions or interventions.  

Graph databases also provide a unified structure that facilitates the integration of diverse 
causal data types, such as experimental, observational, temporal, and spatial data into a 
single repository, taking a holistic comprehensive approach to studying causality (see example 
below.) 21F

xxii 

 

Source:Graph4Med 22F
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A potential cause must occur before an alleged effect, establishing a clear temporal order 
demonstrating a statistical association between the potential cause/effect variables in the data. 
A feasible mechanism based on scientific theory explains how cause leads to the effect.  



The gold standard for establishing causality is experimental data, where the cause is 
intentionally manipulated (intervention) to prove its impact on the effect.  

Observational data is more passive but valuable as domain data. The model can also be 
adjusted by a dose-response relationship, whereby the magnitude of the cause is adjusted to 
correspond to larger or smaller magnitudes of the effect.  

Data quality is critical, necessitating accurate, complete, and multi-variate data with minimal 
missing information. Measurement error, selection bias, and attrition can undermine causal 
conclusions. Replication is needed, as causal conclusions carry more weight when multiple 
independent studies using different datasets and methods yield consistent effects, minimizing 
the likelihood of chance discovery.  

Conclusions and Future Directions 

Intelligence is the ability to acquire knowledge and skills, but AI is the ability of machines to 
acquire the same.  The need is to apply human reasoning to AI to avoid bias and inaccurate 
results. The healthcare sector is in the crosshairs of AI adoption. AI is associated with 
challenges of trust such as bias and black box concerns. These challenges are holding back 
the positive developments so the ability to create trustworthiness for data and the resulting 
decision-making models is crucial. The solution for instilling this trust is causal AI, a branch 
of AI based on the philosophy of causation. This can be endowed on the other AI subfields 
such as ML, DL, RL, and GAI to bring transparency and rational explanations to the decision 
makers and apply human reasoning to the solutions ensuring the right balance of human 
and machine.  

A gap still exists between human and AI/ML causality that needs to be narrowed. AI/ML relies 
on statistical correlations in data to infer causation, whereas humans understand dynamically 
through intuition and common-sense knowledge with the ability to consider uncertainties like 
confounding variables.  

Most AI/ML approaches currently take a limited, static view of causation, so concerns over the 
quality of real-world data, ethics, and privacy dominate discussions for better governance and 
responsible AI. Total automation is not the answer;  the human should remain in the loop, with 
data collected from subject domain experts who remain involved monitoring through the entire 
knowledge value chain.  

Causality enables counterfactual thinking, where philosophy and data science meet with the 
tendency to consider the past and question what could have been if a different decision had 
been made.  

This moves away from one fixed point in history based on one dataset to adopting a 
counterfactual perspective on new historical experience and exploring other possible 
realisations of history (Woo) 23F

xxiv.  

Casual AI is the only branch of AI that can do counterfactual analysis and visualise it through 
use of causal graphs. The case study in this paper highlights the causal process; but it is early 
days for this discipline, and Gartner predicts two to five years for it to reach full adoption and 
integration to other fields of AI, as shown in the 2023 hype cycle 24F

xxv which shows a great deal 
of attention being paid to generative AI.  



 

Valuable results were obtained from the case study, but more observational data input and 
subject matter domain expertise is required to increase the accuracy of predictions and the 
resulting baseline forces/indexes which will form the enterprise system assets to embed the 
causality. Experimentation is involved, much like quantum computing, where all the outcomes 
are generated quickly as in a laboratory environment and humans then select, intervene, and 
improve the best outcomes, allowing the machine to do all the heavy lifting.  

As casual AI naturally holds all the trustworthiness characteristics of AI, it makes sense for the 
healthcare, insurance, and other business sectors to endowing causality to other branches of 
AI so they inherit those capabilities. In the opinion of the author, this leads to a bright future as 
a confluence of quantum computing and causal AI will bring ethics, privacy, and transparency 
to the results and address the healthcare sector requirements—for example, cancer cures and 
new drug innovation.  

This is all dependent on having the right data integrity, cyber integrity, provenance, and quality 
in the observational data used in the causal process leveraging observed data patterns, so 
missing data can be imputed using ML algorithms and human assumptions.  

That means embedding blockchain deep in the architectural plumbing as a real-time smoke 
alarm for data tampering and mitigation of cyberattacks, and a need for all organizations to set 
up responsible AI foundations aligned with current and future regulations.  

Looking to the future, it behoves business to see through current AI hype and create a strategy 
to combine the best of human thinking and computational power across the enterprise. Deep 
learning (DL), for example, is a subscience of machine learning (ML) and ML algorithms can 
enable the attachment of causal models to data.  

These models allow predictions about intervention effects on outcomes so estimating 
counterfactuals and hypothetical outcomes is achievable through ML algorithms. By utilizing 
data from control groups, this could estimate the outcome for individual patient treatment. By 
controlling confounding variables with causal time series analysis, genetic profiles, and 
medical histories, with consent, can be employed to predict the treatment’s impact on a 
specific patient.    



Genomics and clinical data identify causal links between genetic variants and diseases. This 
would require access to a considerable amount of datasets and use the ensemble model 
approach which is very common now in the ML space.  

Ensemble methods combine multiple predictive models to improve overall performance, 
make more accurate predictions, and reduce uncertainty in causal inferences. This averages 
plausible estimates from diverse models encoding alternative assumptions. Identifying the 
most impactful causal relationships can be accomplished by analysing the magnitude of their 
effects. This leads to an evolution of data analytics from purely stochastic, to conventional 
AI , to predictive analytics (including generative AI) and to prescriptive analytics (causal AI) 
leading to causality over statistical analysis and correlation. This shows a shift from sole use 
of Monte Carlo simulation models and probability theory based on historical data, to future 
looking models based on ensemble modelling blending various machine learning models 
and accessing big data casual analysis models consisting of domain knowledge blocks.  
 
Reinforcement learning (RL) is a branch of ML and a fast-growing discipline in daily lives today. 
These are automated agents and co-pilots that learn to make decisions by interacting with an 
environment, removing repetitive and menial tasks from the human, which involves the agent 
taking actions, receiving feedback in the form of rewards or penalties, and using this feedback 
to improve its decision making over time.  

RL allows automated agents to learn optimal behaviour directly from experience to solve 
complex real-world challenges through trial-and-error interaction and real-time learning. This 
is a growing field due to emerging of usages of large language models (LLM). Causality and 
RL are connected through their shared aim of decision making through modelling systems and 
both address challenges by leveraging observational data. Causality RL addresses this 
challenge by integrating causal inference methods into the RL framework.  

Agents use causal models to represent the causal relationships between actions and 
environmental changes, enabling them to infer the causal effects of their actions. 
Counterfactuals play a role in reasoning about the effects of alternative actions.  

Causality RL offers improved decision-making and explanations. Causal reinforcement 
learning is another promising area, involving the integration of causal reasoning into 
automated agents such as co-pilots so agents better understand how their actions propagate 
consequences in the environment.  

To conclude, it is not unusual for causal AI companies to have access to millions of datasets, 
some proprietary and others in the public domain. Data is the most important intangible 
asset and providing data quality and integrity today used in AI training will determine the 
usage in future generations.  
 
It is important to get the foundational data correct today so that future generations are using 
the correct real-world data and the bias and hallucination challenges in AI today are ironed 
out to ensure we do not lose control of data and maintain that provenance for the future.  
 
Humans should not be scared of AI and should embrace it as it will create new horizons and 
opportunities for all. As menial tasks are made redundant or automated, humans can use 
their full potential. Causality is the right approach to keep the human in the loop, explain and 
shape the outcomes, and take advantage of scientific progress. This is where the crossover 
of computer science and philosophy bring in powerful mechanisms for causal analysis. 
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