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Predictive models rely heavily on often biased data shaped by human 

decisions, societal inequities, and, predominantly, representation bias. 

While no universal standard for fairness exists, it is widely acknowledged 

that simply removing sensitive attributes does not eliminate bias.  

Therefore, predictive modeling requires ensuring algorithmic fairness, whether using traditional generalized linear 

models (GLM), Generalized additive model (GAMs), or other more complex predictive models. This paper 

discusses the legal and business imperatives for fairness in actuarial practices and introduces key concepts of 

group fairness. It also presents fairness mitigation methodologies designed to prevent legal issues while 

preserving predictive performance as much as possible with practical applications in insurance. 

Insurance companies collect and store vast amounts of structured and unstructured data daily, including claim 

reports, claim characteristics, emails, and customer reviews. By leveraging information technology resources 

such as cloud storage, computing power, and the Internet of Things (IoT), these companies have significantly 

increased their use of predictive models driven by machine learning (ML) and artificial intelligence (AI). These 

technologies are key drivers in the insurance industry, offering numerous benefits such as improved risk 

segmentation, fraud detection, claims prediction, automated processes, and efficient decision-making. However, 

while these technologies greatly improve predictive performance, actuaries and data scientists are increasingly 

aware of their limitations in providing unbiased, robust, and transparent estimates. These methods often struggle 

to prevent unjustified discrimination against groups protected due to sensitive attributes such as religion, race, or 

gender, which can lead to ethical concerns and pose substantial reputational and legal risks for organizations. 

More specifically, according to “Google's Machine Learning Glossary,”1 a sensitive attribute can be defined as “a 

human attribute that may be given special consideration for legal, ethical, social, or personal reasons.” 

Reputational and legal risks of unjustified discrimination  
As AI technologies are increasingly deployed and used, many decision makers base their analyses and decisions 

on scores or predictions generated by predictive models. However, the reliance on these algorithm-driven 

decisions has brought to light numerous reputational risks worldwide, significantly impacting the industry. Recent 

investigations have highlighted biases in algorithms used by public and private organizations. For example, a 

study published in Science found that a commercial health score prediction algorithm used in hospitals was 

biased against Black patients, who were sicker than white patients at the same risk score2. Another study 

analyzed racial discrimination in home insurance claims resolution, with claims from predominantly Black regions 

less likely to be compensated.3 

Alongside these rising ethical and reputational risks, there is an increasing focus on revising regulatory 

requirements so that the use of predictive models and their underlying data is carefully overseen. Actuaries and 

data scientists are now shifting towards providing oversight for complex model analysis, ensuring that predictive 

models are explainable, ethical, and compliant with regulatory standards. Specifically, the regulatory landscape 

has evolved, with variations depending on the country or region where the AI is developed and deployed. Without 

providing exhaustive coverage, we highlight some recent regulatory developments in the European Union (EU) 

and United States (U.S.) below. 
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THE EU 

For EU insurers, the fairness principle is an obligation. A notable example is the 2004 EU Goods and services 

directive by the Council of the European Union4, which mandates equal treatment between men and women 

(known as “unisex”) in accessing and providing goods and services, including insurance services. However, 

some exceptions in insurance premiums remained in place until December 2012, when the unisex pricing 

directive in the insurance industry began to be fully enforced by the European Court of Justice. Specifically, this 

means men and women with the same characteristics should pay the same price for the same product. Recently 

in data processing and predictive modeling, regulatory advancements in the EU regarding the ethical 

development include: 

1) General data protection regulation (GDPR): With the democratization of data-based algorithms and 

procedures, the GDPR came into force across the EU in May 2018. Specifically, this regulation aims to protect 

the privacy of personal data, including sensitive attributes such as ethnicity and health conditions. According to 

Article 5(1) of the GDPR5, personal data shall be “processed lawfully, fairly and in a transparent manner in 

relation to the data subject.” 

2) European AI act (EU AI Act): With the rise of AI systems and generative AI models such as OpenAI’s 

ChatGPT, the EU AI Act has been introduced to regulate them based on their level of risk, leading to different 

obligations for the companies. Unacceptable risks, such as social scoring, are prohibited. High-risk AI 

applications, such as those used in healthcare, require strict regulation to ensure transparency and mitigate 

algorithmic biases. Limited-risk applications, such as chatbots, must be documented and have some lighter 

transparency obligations, while other safe applications have minimal requirements. Specifically, in the 

insurance sector, health and life insurance are heavily affected as ML-based scoring is considered high-risk 

when using AI systems. Furthermore, according to Recital 44, “to protect the right of others from the 

discrimination that might result from the bias in AI systems, the providers should be able to process special 

categories of personal data […] to ensure the bias monitoring, detection and correction in relation to high-risk AI 

systems.” We observe that general-purpose AI such as ChatGPT has a category of its own and we refer to the 

Regulation (EU) 2024/16896 of the European Parliament, for more information. 

Furthermore, we note that insurance is already a highly regulated domain with notable overlap between the above 

legal requirements and existing insurance regulations for AI/data. For example, the fairness principle is also 

recognized in Article 17(1) of the Insurance distribution directive7 where it states that insurance distributors shall 

“always act honestly, fairly and professionally in accordance with the best interests of their customers.” Similarly, the 

Solvency II framework, particularly Delegated regulation 2015/35, includes detailed provisions on data quality, 

model validation, model calibration, documentation, and record-keeping. 

THE U.S. 

For insurers in the U.S., fairness requirements can vary depending on the state and the insurance domain (e.g., 

property and casualty [P&C] vs. life insurance). While there is no universal consensus on fairness, discrimination 

based on race, ethnicity, and religion (sometimes called the “big three”) is generally prohibited. Beyond these 

sensitive attributes, scholars and actuaries have observed that certain attributes may be prohibited in some states or 

specific insurance domains but permitted in others. For instance, using genetic information is typically permitted in 

most states within P&C practices but is strictly prohibited in health insurance. Figure 1, adapted from Avraham 

(2013) and Charpentier (2024) in the book Insurance, biases, discrimination and fairness, highlights the attributes 

considered sensitive across different lines of insurance in the U.S.8 
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FIGURE 1: U.S. INSURANCE ANTIDISCRIMINATION LAWS 

 AUTO 
 

P&C DISABILITY HEALTH LIFE 

Race (or origin) х х х х х 

Religion х х х х х 

Gender o ● o o ● 

Sexual orientation ● ● o o o 

Age o ● o o ● 

Credit score o o ● ● ● 

Zip code o o ● ● ● 

Genetics ● ● o х o 

A characteristic is classified as ● if it is permitted without specific regulation, х if it is prohibited, and o if its status varies across states. 

The recent enforcement of fairness in insurance is particularly evident in the U.S. We outline some key fairness 

principles in insurance, particularly in Colorado and New York. 

1. Colorado: The Division of Insurance (DOI) issued a regulation effective November 14, 20239 to prevent 

race-based discrimination in life insurers' use of AI models. This regulation aims to govern life insurers that 

use external consumer data and information sources (ECDIS) that could lead to discriminatory models. 

ECDIS includes data sources such as credit scores, social media habits, locations, purchasing habits, home 

ownership, educational attainment, occupation, licensures, civil judgments, and court records. The regulation 

required all Colorado licensed life insurers to submit a compliance progress report by June 1, 2024, and an 

annual compliance attestation starting December 1, 2024. Notably, the DOI does not require insurers to 

collect data on the race or ethnicity of their policyholders. Instead, the DOI prescribes using Bayesian 

improved first name surname geocoding to infer policyholders' race. This statistical method uses 

geodemographic data from the 2010 U.S. census and lists of common first names and surnames associated 

with various races and ethnicities to provide probabilistic predictions. The DOI has determined this method to 

be adequate for testing insurance models for compliance with the law. 

2. New York: On July 11, 2024, the New York State Department of Financial Services issued the AI Circular 

Letter (Circular Letter No. 7)10, regulating the use of ECDIS and AI systems in insurance underwriting and 

pricing. New York licensed insurers must evaluate whether ECDIS correlates with protected class status, 

potentially causing unfair discrimination. If correlations are found, insurers must (1) justify using ECDIS as a 

legitimate business necessity and (2) annually search for less discriminatory alternative variables or 

methodologies that would meet their business needs. Insurers are required to maintain comprehensive 

documentation for their use of all AI systems, including the ECDIS that were used. This documentation 

should include descriptions of testing conducted at least annually to assess the output of AI models, 

including any drift resulting from ML or other automated updates. 

Despite numerous regulatory developments worldwide, there is no clear consensus on a gold standard for 

evaluating unwanted discrimination in predictive models. Various fairness notions exist for specific applications 

but they are often incompatible with each other. In the field of algorithmic fairness, ongoing developments focus 

on local (individual-level) and global (group-level) fairness approaches. These are commonly known as individual 

fairness and group fairness, respectively. 

Individual fairness assesses whether a model would make the same prediction if the same individual were part of 

the privileged group. It ensures that similar individuals receive similar outcomes, regardless of their group 

membership. This article instead focuses on group fairness, which examines whether individuals in privileged and 

unprivileged groups are treated differently. Group fairness aims to ensure that groups defined by protected 

attributes, such as race or gender, receive equitable treatment overall. 
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Main notions of (group) fairness and bias diagnosis 
Before detailing the main approaches to mitigate unfairness, this section introduces the main notions of group 

fairness. This provides a foundation for understanding how to evaluate and address biases in predictive models. 

For this purpose, we use the following notations: Let 𝑿 represent the non-sensitive features, 𝑺 the sensitive 

attribute we want to ensure fairness for, 𝒀 the true response and 𝒀̂ the predictive response of the model. Within 

the technical developments that follow, we assume that the sensitive attribute is available and can be used for 

testing fairness and creating a predictive model, denoted as 𝒇̂.  

For simplicity, we consider a binary classification framework where 𝒀̂, 𝒀 ∈ {𝟎, 𝟏} with binary sensitive attribute 𝑺 ∈

{−𝟏, 𝟏}. Without loss of generality, we can assume 𝑺 represents gender. Additionally, let 𝒁̂ ≔ 𝒇̂(𝑿, 𝑺) be the 

estimated probability score of the event {𝒀̂ = 𝟏} before applying any threshold. 

We categorize fairness notions into three main sets: independence, separation, and sufficiency. Each is detailed 

below with examples in the insurance context. 

INDEPENDENCE 

The independence notion of fairness, or demographic parity (DP), is likely the most intuitive and widely used. It 

compares whether the model predictions (or scores) are similar between different populations of the sensitive 

attribute. Formally, this is expressed as: 

𝑌̂ ⊥ 𝑆. 

This means that predicted outcomes should be independent of the sensitive attribute, ensuring equitable 

treatment of individuals from different groups by the model. More specifically, in the binary classification 

assumption, the DP criterion states: 

ℙ(𝑌̂ = 1|𝑆 = 1) =  ℙ(𝑌̂ = 1|𝑆 = −1). 

As an example, in the case of a fraud scoring or default risk (such as a loan) algorithm, if the average score for 

women is 2%, and the average score for men is also 2%, the algorithm is considered “gender-fair” in terms of DP. 

In the algorithmic fairness literature, this notion of fairness is known as a weak DP. If we denote the conditional 

cumulative distribution function (CDF) 𝐹𝑠(𝑡) =  ℙ(𝑍̂ ≤ 𝑡|𝑆 = 𝑠), expressed with estimated scores, the stronger 

counterpart of the previous DP version is: 

𝐹1(𝑡) − 𝐹−1(𝑡)  = 0 for all 𝑡 ∈ [0, 1]. 

We define the following (strong) DP unfairness measure: 

𝑈𝐷𝑃(𝑓) ≔ 𝑚𝑎𝑥
𝑡∈[0,1]

 |𝐹1(𝑡) − 𝐹−1(𝑡)| , 

where the predictive model 𝑓 is (strongly) DP fair if and only if 𝑈𝐷𝑃(𝑓) = 0. The empirical version of this quantity is 

well-established in statistics as it relates to the nonparametric Kolmogorov–Smirnov (KS) test, which compares two 

samples to assess the similarity between their empirical CDFs, denoted 𝐹̂𝑠. In this context, 𝑈̂𝐷𝑃, the empirical version 

of 𝑈𝐷𝑃, corresponds to the D statistic of the KS test. 

This 𝑈𝐷𝑃 metric is suitable when the response is expected to be independent of the sensitive variable or when 

observations are biased against the unprotected population. Such bias may arise from historical or societal 

inequalities reflected in the data. 

However, this metric does not account for the actual risk levels observed in different groups and is therefore 

unsuitable if the risk factors are dependent on the sensitive attribute. More generally, if the true response 𝑌 is 

dependent on the sensitive attribute 𝑆, the notion of independence 𝑌̂ ⊥ 𝑆 may be inappropriate. Consequently, we 

can consider an alternative to the independence criterion through the so-called “separation” criterion, which 

incorporates the true response. 
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SEPARATION 

The separation notion of fairness evaluates whether the model's predictions (or scores) are consistent across 

different populations defined by the sensitive attribute, conditional on the true response. This is expressed as: 

(𝑌̂ ⊥ 𝑆) | 𝑌. 

This means that the model's predictive performance should be consistent across different values of the sensitive 

attribute. In binary classification, the separation criterion leads to subnotions of fairness such as “equal opportunity” 

and “equalized odds” (the latter will be denoted by “EO” in this paper). Equal opportunity requires that the true 

positive rates (TPR) be equal across groups defined by the sensitive attribute. More formally: 

ℙ(𝑌̂ = 1|𝑆 = 1, 𝑌 = 1)  = ℙ(𝑌̂ = 1|𝑆 = −1, 𝑌 = 1)  (EqTPR). 

For example, in a car insurance model estimating the probability of a serious claim, if the TPR is 87% for women 

and men, the algorithm is considered gender-fair in terms of equal opportunity.  

Instead of only ensuring equal chances of correct classification, one can also ensure that false positive rates (FPRs) 

are equal across different values of the sensitive attribute, ensuring equal chances of incorrect classification: 

ℙ(𝑌̂ = 1|𝑆 = 1, 𝑌 = 0) =  ℙ(𝑌̂ = 1|𝑆 = −1, 𝑌 = 0)  (EqFPR). 

If both criteria (EqTPR) and (EqFPR) are satisfied simultaneously, the model achieves EO fairness, providing a 

more nuanced approach by balancing both types of errors. Let us denote the conditional TPR 𝑇𝑃𝑅𝑠(𝑓) =

ℙ(𝑌̂ = 1|𝑆 = 𝑠, 𝑌 = 1) and the conditional FPR 𝐹𝑃𝑅𝑠(𝑓) = ℙ(𝑌̂ = 1|𝑆 = 𝑠, 𝑌 = 0). Then the (weak) EO unfairness 

measure is defined by: 

𝑈𝐸𝑂(𝑓) ≔ 𝑚𝑎𝑥( |𝑇𝑃𝑅1(𝑓) − 𝑇𝑃𝑅−1(𝑓)| , |𝐹𝑃𝑅1(𝑓) − 𝐹𝑃𝑅−1(𝑓)|) 

Like DP, these criteria are considered a weaker form of fairness. The stronger form involves evaluating fairness 

based on the estimated score 𝑍̂, which includes assessing the equality of receiver operating characteristic (ROC) 

curves or equality of area under the ROC curve (AUC-ROC or AUROC) for different values of the protected 

attribute. This aspect is beyond the scope of this paper. 

An example of EO is the following: If the rate of loan acceptance, from a credit lending algorithm, among those 

who would have repaid and those who would not have repaid is similar for men and women, the algorithm is 

considered gender-fair in terms of EO. 

This notion of fairness is appropriate when the response is linked to the sensitive attribute and when observations 

are not biased with regard to the sensitive attribute (e.g., no historical or societal bias). EO ensures that errors 

made by the model do not disproportionately impact any one group. For instance, such errors may arise from 

sampling bias (e.g., when certain groups are underrepresented in the data) or representation bias (e.g., when 

features related to a sensitive attribute are unevenly distributed) contained in the data. 

SUFFICIENCY 

Another commonly used fairness criterion is sufficiency. This notion requires true outcome parity among 

individuals who receive the same decision from the model, regardless of the value of the sensitive attribute. This 

is expressed as: 

(𝑌 ⊥ 𝑆) | 𝑌̂. 

While separation deals with error rates in terms of the fraction of errors over the ground truth, such as the number of 

individuals whose loan requests are likely to be denied by the model among those who would have repaid, 

sufficiency considers the decision maker’s perspective. Specifically, it looks at the number of individuals who will not 

repay the loan among those who are given the loan. In the binary classification framework, the most frequently used 

fairness subnotion of sufficiency is predictive parity (PP), also known as outcome test, defined as: 

ℙ(𝑌 = 1|𝑆 = 1, 𝑌̂ = 1) =  ℙ(𝑌 = 1|𝑆 = −1, 𝑌̂ = 1), 

or equivalently, 

𝑇𝐷𝑅1(𝑓) =  𝑇𝐷𝑅−1(𝑓), 
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where 𝑇𝐷𝑅𝑠(𝑓) ≔ ℙ(𝑌 = 1|𝑆 = 𝑠, 𝑌̂ = 1) denotes the true discovery rate (TDR). This metric measures the 

proportion of true positives among all positive predictions made by the model for group {𝑆 = 𝑠}. Conversely, the 

false discovery rate (FDR) for group {𝑆 = 𝑠}, defined as 𝐹𝐷𝑅𝑠(𝑓) ≔ ℙ(𝑌 = 1|𝑆 = 𝑠, 𝑌̂ = 0) looks at the proportion of 

false positives among all positive predictions made by the model. The above PP notion of fairness is later extended 

to consider the FDR as well: 

ℙ(𝑌 = 1|𝑆 = 1, 𝑌̂ = 𝑦) =  ℙ(𝑌 = 1|𝑆 = −1, 𝑌̂ = 𝑦), 𝑦 ∈ {0, 1} 

Using the quantities we defined, the proposed PP unfairness measure is written as 

𝑈𝑃𝑃(𝑓) ≔ 𝑚𝑎𝑥( |(𝑇𝐷𝑅1 − 𝑇𝐷𝑅−1)(𝑓)| , |(𝐹𝐷𝑅1 − 𝐹𝐷𝑅−1)(𝑓)|). 

A stronger version of PP is calibration parity (CP), which requires conditioning directly on the estimated score 𝑍̂ 

rather than the prediction 𝑌̂. It is formally expressed as: 

ℙ(𝑌 = 1|𝑆 = 1, 𝑍̂ = 𝑧) =  ℙ(𝑌 = 1|𝑆 = −1, 𝑍̂ = 𝑧), 𝑧 ∈ [0,1]. 

EXAMPLE OF CP 

Let us recall the 2019 Science article cited above that highlighted a health score prediction algorithm used in 

hospitals. This study, relevant to the life and health insurance domains, found that Black patients were sicker than 

white patients despite having the same risk score. This is an example where CP is not verified as the true outcomes 

differed significantly between racial groups despite having the same model outcome. 

In Figure 2, we outline the advantages and disadvantages of each fairness metric. 

FIGURE 2: STRENGTHS AND LIMITATIONS OF FAIRNESS METRICS 

 OBJECTIVE LIMITATIONS FORMULA 

Independence  

(Demographic parity) 

Ensures equal outcomes across 

sensitive groups, ignoring all other 

factors 

Does not make use of the true 

target  
𝑌̂ ⊥ 𝑆 

Separation 

(Equalized odds) 

Ensures the same performance and/or 

the same error rates across sensitive 

groups (focuses on those affected by 

decisions) 

The true outcome should not 

be biased 
(𝑌̂ ⊥ 𝑆) | 𝑌 

Sufficiency 

(Predictive parity) 

Requires equal treatment for 

individuals receiving the same model 

prediction, irrespective of sensitive 

attributes (focuses on the decision 

maker’s perspective) 

Systemic biases in the data 

(e.g., historical discrimination) 

can still result in unfair 

outcomes 

(𝑌 ⊥ 𝑆) | 𝑌̂ 

IMPOSSIBILITY THEOREM IN GROUP FAIRNESS 

In a binary classification framework, except in rare cases, any two of the three fairness criteria (independence, 

separation, and sufficiency) are mutually exclusive. More specifically, 

− If 𝑆 and 𝑌̂ are dependent, the exact DP and EO are incompatible, i.e., (𝑈𝐷𝑃(𝑓), 𝑈𝐸𝑂(𝑓)) ≠ (0, 0). 

− If 𝑆 and 𝑌 are dependent, the exact DP and PP are incompatible, i.e., (𝑈𝐷𝑃(𝑓), 𝑈𝑃𝑃(𝑓)) ≠ (0, 0). 

− If 𝑆 and 𝑌 are dependent, the exact EO and PP are incompatible, i.e., (𝑈𝐸𝑂(𝑓), 𝑈𝑃𝑃(𝑓)) ≠ (0, 0). 

Nevertheless, rather than attempting to meet multiple exact fairness criteria, such as (𝑈𝐷𝑃(𝑓), 𝑈𝐸𝑂(𝑓), 𝑈𝑃𝑃(𝑓)) =

(0, 0, 0) or closely approaching accepted thresholds (e.g., 0.05) with 𝑈𝐷𝑃(𝑓) ≤ 0.05, 𝑈𝐸𝑂(𝑓) ≤ 0.05 and 𝑈𝑃𝑃(𝑓) ≤

0.05, which may be incompatible, instead, it is more appropriate to: 

1) select the most relevant fairness criterion for the specific application, with the target of UEO(f̂) ≤ 0.05; 

2) relax these criteria and focus on effectively achieving several approximate fairness measures such as 

(UDP(f̂), UEO(f̂), UPP(f̂)) = (0.1, 0.1, 0.1). 
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Main techniques of bias remediation 
There are three primary approaches to achieving fair predictions: Pre-processing methods address bias in the 

data before applying predictive models, in-processing methods reduce bias during the model calibration, and 

post-processing methods enforce fairness by adjusting model outcomes in a final step.  

PRE-PROCESSING APPROACHES 

In this section, we present the pre-processing approaches based on the reweighting scheme proposed by 

Kamiran and Calders in 201211. 

Focus on the reweighting instances methodology 

Kamiran and Calders (2012) propose a method to reduce DP unfairness by adjusting the weights of training 

instances based on group membership, promoting fairness in the model's predictions across different sensitive 

groups. Instead of assigning equal weights to all observations, they generate a weight w(s) for each value s of 

the sensitive attribute to satisfy the independence criterion. These weights are designed to ensure 

ℙ(Y = 1, S = s) =  w(s)ℙ(Y = 1) ℙ(S = s), 

thereby enforcing DP fairness. Empirically, given n observations {(xi, si, yi)}i=1,…,n, the weights are approximated 

by the plug-in formula: 

ŵ(s) =
1

n
×

∑ 1yi=1i × ∑ 1si=si   

∑ 1yi=1,si=si
. 

During the training of any predictive model, the weight ŵ(s) is applied to each instance (x, s). 

IN-PROCESSING APPROACHES 

Classical predictive models aim to minimize predictive errors or maximize accuracy. To incorporate fairness 

metrics, two main approaches are commonly used: model-specific and model-agnostic approaches. A model-

specific approach leverages the architecture of the predictive model, such as adversarial debiasing introduced by 

Zhang et al. (2018)12. This method enforces DP and EO fairness in neural network architectures using 

adversarial training, involving a primary model trained for a specific task and a bias correction model trained to 

reduce bias in the primary model’s predictions. Conversely, a model-agnostic approach can be applied to a wide 

variety of predictive models. This article focuses on the latter, specifically the method proposed by Agarwal in 

201813 (and later in 201914 for regression methods), which adds a penalty term to the objective function to 

achieve a trade-off between accuracy and fairness. 

Focus on the exponentiated gradient reduction (EGR) methodology 

Let us focus on EO fairness. Formally, the original optimization problem is expressed as: 

f̂ ∈ argminfR(f) such that f is EO-fair, 

with R representing the risk function, typically a quadratic risk for regression tasks and misclassification risk for 

classification tasks. The authors propose EGR, a reduction-based algorithm that incorporates either DP or EO 

fairness constraints into a sequence of standard cost-sensitive classification tasks. In each iteration, the algorithm 

reweights biased data points using Lagrange multipliers, which impose higher penalties on errors that violate 

fairness constraints the most. A new classifier is then trained on the adjusted dataset, therefore progressively 

reducing bias. Note that such an approach could be extended to other fairness constraints like PP fairness. 

POST-PROCESSING APPROACHES 

Post-processing techniques adjust a model's predictions to ensure fairness, without modifying the training data or 

the model itself. Recent methods apply optimal transport theory for DP-fairness in both regression and 

classification, as demonstrated by Chzen et al. (2020)15 and Hu et al. (2024)16. Additionally, constraint-based 

methodologies, such as those developed by Denis et al.(2024)17 and Alghambi (2022)18, are used to ensure DP 

or EO fairness. Finally, methodologies such as those developed by Zeng et al.(2022)19 introduce groupwise 

thresholding rules (GWTR) to ensure fairness in final binary outcomes, even when the underlying scores remain 

biased. 
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Focus on GWTR in Zeng et al. (2022)  

The authors demonstrate that if differences in group performance are moderate, as defined by the sufficient 

condition: 

min
s

ℙ(Y = 1| Ẑ ≥ c, S = s) ≥ max
s

ℙ(Y = 1| S = s), 

where Ẑ represents the score for the individual x belonging to group s, and c is a cost-related parameter, then all 

optimal classifiers satisfying PP fairness follow GWTR. In other words, the decision threshold for determining the 

final outcome is entirely dependent on the individual's sensitive group, ensuring that fairness constraints are met 

at the classification level. 

For further details on optimization, we refer to Zeng et al.’s original paper. 

COMPARING PRE-, IN- AND POST-PROCESSING APPROACHES 

Pre-processing methods promote group fairness early in the ML lifecycle by addressing bias at the data level, 

offering simplicity and model-agnostic application; however, they often underperform compared to in- and post-

processing techniques, especially given that they do not provide control on potential bias further introduced by 

the modeling process itself.  

In-processing methods directly optimize fairness constraints during training and preserve the original model 

structure. For example, if the modeler relies on a generalized linear model (GLM), the fair model after in-

processing is still a GLM model, which preserves some form of transparency with access to coefficients. 

However, in-processing methods can be computationally demanding and require access to the training process.  

Post-processing methods are the fastest and most flexible as they can be applied to any pre-trained classifier 

without altering the training phase. However, they trade off model structure preservation—i.e., a GLM is no longer 

a GLM after post-processing—potentially impacting model transparency and interpretability. 

In Figure 3, we outline the advantages and disadvantages of each approach. 

FIGURE 3: STRENGTHS AND LIMITATIONS OF PRE-, IN-, AND POST-PROCESSING APPROACHES 

 OBJECTIVE PROS CONS 

Pre-processing Generate a corrected dataset by 

modifying existing data or adding 

synthetic data 

Model-agnostic 

Mitigates biases at the beginning 

No direct control over biases in the 

model's output 

In-processing Incorporate fairness constraints into 

the objective function used for model 

calibration 

Remains within the same model 

class: A GLM is still a GLM after 

fairness mitigation 

Model-specific and requires greater 

time complexity 

Post-processing Modify model outputs after training to 

reduce bias, typically by adjusting 

decision thresholds or reweighting 

scores 

Direct control over biases 

Model-agnostic 

The final predictions do not remain 

within the original model class 
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Case studies 
This section examines fairness diagnosis and remediation across various actuarial use cases, using datasets from 

bank data, car insurance (French motor personal line [freMPL]), and mortality data (global open source severity of 

illness score [GOSSIS]). For each dataset, we explore the principles of DP, EO, and PP fairness, using GLM, GBM, 

and “black-box” scoring as the respective predictive models. 

DP USING PRE-PROCESSING 

The bank dataset contains information on 30,000 credit card customers, including demographic details such as 

education level, marital status, and gender. Financial data such as credit card limits, repayment status, spending 

habits, transaction frequency, and median purchases are also included. We focus on evaluating the DP 

unfairness measure using ÛDP for the base and fair scores on this dataset, where the goal is to produce gender-

fair scores for loan defaults. Specifically, we apply a pre-processing approach based on the reweighting strategy 

described earlier to generate fair probability scores and compare them to the base probability scores from the 

logistic regression model. 

Figure 4 uses kernel density estimation (KDE) graphs to compare model score distributions by gender. The left 

graph represents the base model without fairness mitigation while the right graph shows the fair model after 

mitigation. KDE smooths data points into continuous curves, making visualizing differences in score distributions 

easier. Group 1 represents men, and Group 2 represents women. In this framework, we observe in the left graph 

that DP fairness is not achieved in the reference model, which predicts a higher probability of loan default for men 

than women. Using the reweighting approach introduced earlier, as shown in the right graph, we achieve our 

main goal by significantly reducing DP unfairness by approximately seven times (from 0.14 to 0.02) with minimal 

impact on predictive performance and maintaining an AUC of 0.72. Overall, the right graph also shows that all 

fairness metrics (DP, EO, PP) are close to or below the 5% threshold, except for PP-fairness. 

FIGURE 4: STRONG DP ANALYSIS: MODEL OUTPUT COMPARISON 

  

Figure description: Comparison of model distributions for Group 1 (men) and Group 2 (women). 

Figure 5 shows a (UDP, AUC) diagram where each point represents the mean and one-third of the standard 

deviation across 30 bootstrap iterations, varying the complexity by selecting 3, 4, or 10 features based on the top 

variable importances of the model (e.g., for GLM, this would be the absolute value of the coefficients with the 

features being normalized). In the diagram, orange points represent the fair predictions, and blue points 

represent the baseline predictions. 

  



MILLIMAN WHITE PAPER 

Trustworthy artificial intelligence in insurance: 10 

Navigating fairness and performance in predictive modeling June 2025 

We observe that as complexity increases, defined by the number of features, the methodology consistently 

maintains good DP fairness. However, this is accompanied by a slight overall average decrease in predictive 

performance. In other words, after mitigation, the model predicts similar probabilities of loan default for both men 

and women with only a slight reduction in predictive performance. 

Note that focusing the reweighing approach on scores rather than class predictions (strong DP vs. weak DP) 

allows for a more in-depth analysis. This approach enables us to conduct additional analyses, such as examining 

score distributions, as shown in Figures 5 and 6. More specifically, Figure 6 shows the graphical representation 

of observed and predicted default rates, broken down by individual categorical variables. All other factors being 

equal, the base model (in blue, see the last panel) introduces a more significant bias based on gender than the 

"fair" model (in orange, see the last panel), adjusted for DP, which ensures consistent default rates (labeled as 

“average positive rate” in the graph) between the two groups. 

FIGURE 5: (DP) UNFAIRNESS AND PERFORMANCE ACROSS DIFFERENT MODEL COMPLEXITIES 

 

Figure description: (Unfairness, predictive performance) diagram for base and fair predictions across 30 simulations with varying model 

complexity (number of features used for training the predictive model). Means (o) and standard deviations (+) are shown. 
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FIGURE 6: COMPARISON OF ACTUAL AND PREDICTED RATES (FAIR AND BASE) BY CATEGORICAL FEATURE 

 

Figure description: In each panel, bar plots display the frequency of each feature value, while overlaid line plots show the observed and predicted 

default rates. 

  



MILLIMAN WHITE PAPER 

Trustworthy artificial intelligence in insurance: 12 

Navigating fairness and performance in predictive modeling June 2025 

EO USING IN-PROCESSING 

In this section, we focus on evaluating the EO unfairness measure using ÛEO for the base and fair predictions on 

the motor insurance dataset freMPL. The goal is to produce gender-fair predictions for classifying claim 

occurrence. This dataset is provided by a private French motor insurer and includes various demographic and 

vehicle-related features as well as risk factors, claim amounts, and claim histories for approximately 30,000 

policies. We apply the EGR method described above to generate fair predictions and compare them to the base 

predictions from the GLM model.  

Agarwal et al. (2018)’s methodology examines weak EO by directly predicting binary outcomes—claim or no 

claim—rather than relying on model scores. Since model scores are often poorly calibrated and may not 

accurately reflect probabilities, score density plots provide limited insights. Therefore, we present binary outcome 

rates instead. 

Figure 7 illustrates this using bar plots, which show the rates of predicted claim and no claim outcomes within the 

“true claim” cases, stratified by different values of the sensitive group. Notably, this figure shows that we achieve 

improvements in EO fairness (and strong DP fairness) with only a minor decrease of approximately 0.02 in 

predictive performance (AUC). 

FIGURE 7: EQUAL OPPORTUNITY ANALYSIS FOR BASE AND FAIR MODELS 

 

Figure description: Bar plots illustrate the rates of predictive positive and negative outcomes within the (true) positive outcomes, stratified by 

different values of the sensitive group. 

Furthermore, Figure 8 shows that across 30 bootstrap iterations, the proposed methodology (orange) consistently 

enforces EO fairness across all ranges of explanatory features compared to the base model (blue), with only a 

slight drop in predictive performance. 
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FIGURE 8: (EO) UNFAIRNESS AND PERFORMANCE ACROSS DIFFERENT MODEL COMPLEXITIES 

 

Figure description: (Unfairness, Predictive performance) diagram for base and fair predictions across 30 simulations with varying model 

complexities (number of features used for training the predictive model). Means (o) and standard deviations (+) are shown. 

PP USING POST-PROCESSING 

We focus on evaluating the PP unfairness measure using ÛPP for the base and fair predictions on the GOSSIS 

dataset, where the goal is to produce ethnicity-fair predictions for classifying mortality. This dataset includes over 

130,000 intensive care unit visits from patients across a one-year period and covers Argentina, Australia, Brazil, 

India, New Zealand, Sri Lanka, and more than 200 hospitals in the U.S. Moreover, this dataset provides a black-box 

score corresponding with the Acute Physiology and Chronic Health Evaluation (APACHE) IV probabilistic prediction 

of in-hospital mortality for the patient. This score is derived from the APACHE III score and other covariates, 

including diagnosis. 

Figure 9 illustrates the evolution of the mean hospital death count with respect to the mortality risk score percentile, 

conditional on the sensitive group. The given black-box score appears to be PP-fair. This observation is further 

supported by Figure 10, which displays the distribution of true outcomes among positive predictions, again broken 

down by sensitive group. 
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FIGURE 9: CALIBRATION PARITY ANALYSIS FOR BLACK-BOX SCORES 

 

Figure description: Line plots illustrate the evolution of the mean hospital death count by mortality risk score percentile, stratified by different 

values of the sensitive group. 

FIGURE 10: PP ANALYSIS FOR BLACK-BOX SCORES 

 

Figure description: Bar plots illustrate the rates of (true) positive and negative classes within the positive predicted outcomes, stratified by different 

values of the sensitive group. 

  



MILLIMAN WHITE PAPER 

Trustworthy artificial intelligence in insurance: 15 

Navigating fairness and performance in predictive modeling June 2025 

To explore the impact of bias, we introduce an artificial shift in the black-box score by adding a constant value of 

0.1 to all scores from one sensitive group while subtracting 0.1 from those of the other sensitive group. Based on 

this artificially biased dataset, we apply the previously described Lagrange-based method to generate fair 

predictions. We then compare these adjusted predictions to the given (biased) black-box predictions, with the 

results presented in Figure 11. This shows the rates of predicted death and no death outcomes among actual 

mortality cases, stratified by different values of the sensitive group. The (artificially biased) black-box score is PP-

unfair, with a PP unfairness measure of 0.199 (well above 0.05). This indicates that within actual mortality cases, 

mortality predictions significantly differ between the group “African American” and “Other.” However, as shown in 

Figure 11, fairness can be further enhanced (from 0.199 to 0.017 of PP unfairness), leading to overall 

improvements in the predictive model. 

FIGURE 11: PP ANALYSIS FOR BASE AND FAIR MODELS 

 

Figure description: Bar plots illustrate the rates of positive and negative classes within the positive predicted outcomes, across different values of 

the sensitive group. 
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Summary 
Driven by ethical considerations or imposed regulations, various approaches can be employed to diagnose and 

mitigate biases and unfairness. As highlighted, biases often stem from issues such as a lack of data 

representation, poor data quality, or societal and historical human biases embedded in decisions. This article 

demonstrates that these biases can be defined with the predictive modeling objective in mind and, more 

importantly, addressed at every stage of the ML cycle—pre-processing, in-processing, and post-processing. This 

paper outlined several established fairness considerations and methodologies from an actuarial perspective, 

including ensuring gender-fair performance in non-life insurance for P&C practices, preventing unfair treatment in 

fraud or loan default detection, and promoting ethnicity-fair procedures in life insurance mortality scores. 
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